Q. \( (-x+2)(x^2+9x-2) \)
Answer
We expand by distributing:
\[
(-x+2)(x^2+9x-2)
= -x\cdot x^2 – x\cdot 9x – x\cdot(-2) + 2\cdot x^2 + 2\cdot 9x + 2\cdot(-2)
\]
\[
= -x^3 -9x^2 +2x +2x^2 +18x -4
= -x^3 -7x^2 +20x -4.
\]
Final result: \(\boxed{-x^3-7x^2+20x-4}\).
Detailed Explanation
Problem
\( (-x+2)(x^2+9x-2) \)
Step-by-step solution
-
Use the distributive property to split the product:
\[
(-x+2)(x^2+9x-2)=(-x)(x^2+9x-2)+2(x^2+9x-2).
\] -
Multiply each term in the parentheses by \(-x\):
\[
(-x)(x^2)=-x^3,\qquad (-x)(9x)=-9x^2,\qquad (-x)(-2)=2x.
\] -
Multiply each term in the parentheses by \(2\):
\[
2(x^2)=2x^2,\qquad 2(9x)=18x,\qquad 2(-2)=-4.
\] -
Combine all terms:
\[
-x^3-9x^2+2x+2x^2+18x-4.
\] -
Collect like terms:
\[
-x^3+(-9x^2+2x^2)+(2x+18x)-4=-x^3-7x^2+20x-4.
\]
Final answer: \(\displaystyle -x^3-7x^2+20x-4\)
See full solution
FAQs
How do I expand \( (-x+2)(x^2+9x-2) \)?
-A: Use the distributive property: \((-x)(x^2+9x-2)+2(x^2+9x-2)=-x^3-9x^2+2x+2x^2+18x-4\). Combine like terms to get \(-x^3-7x^2+20x-4\).
Can I use FOIL here?
-A: FOIL is for two binomials. For a binomial times a trinomial, use distributive law (multiply each term of the binomial by every term of the trinomial).
How do I combine like terms correctly?
-A: Collect same-power terms: from expansion \(-x^3-9x^2+2x+2x^2+18x-4\), combine \( -9x^2+2x^2=-7x^2\) and \(2x+18x=20x\).
How can I factor the expanded result back?
-A: \(-x^3-7x^2+20x-4 = -(x^3+7x^2-20x+4)\). Using root \(x=2\) gives \((x-2)(x^2+9x-2)\), so original is \((-x+2)(x^2+9x-2)\).
What are the roots of the product?
-A: Solve \((-x+2)(x^2+9x-2)=0\). Roots: \(x=2\) and \(x=\frac{-9\pm\sqrt{89}}{2}\) (from \(x^2+9x-2=0\)).
What is the degree and leading coefficient?
-A: The expanded polynomial \(-x^3-7x^2+20x-4\) has degree 3 and leading coefficient \(-1\).
How do I check my expansion quickly?
-A: Substitute an easy value, e.g. \(x=0\): original gives \(2(-2)=-4\); expanded gives \(-4\). Matching values increase confidence.
Is \(-x+2\) the same as \(2-x\) or \(-(x-2)\)?
-A: Yes: \(-x+2=2-x\), and \(-(x-2)= -x+2\). These rewrites can simplify sign tracking or factoring.
-Are there any special-product shortcuts here?
-A: Not really-no perfect square or sum/difference of cubes. Use distributive multiplication and combine like terms.
How do I avoid sign errors?
-A: Multiply term-by-term, write intermediate results, track each sign, and combine like terms last. Re-check by substituting one or two values.
Can synthetic division help here?
-A: Synthetic division helps test roots or divide by linear factors (e.g. test \(x=2\)), but multiplication expansion uses distributive steps instead.
How do I multiply systematically for larger polynomials?
-A: Organize in rows (like long multiplication): multiply each term of one polynomial by each term of the other, align by degree, then sum columns to combine like terms.
Math AI tools solve different problems.
Find your favorite today!
Find your favorite today!
173,935+ happy customers
Math, Calculus, Geometry, etc.
Math, Calculus, Geometry, etc.